A Survey of SOM-Based Active Contour Models for Image Segmentation
نویسندگان
چکیده
Self Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly when dealing with image segmentation as a contour extraction problem. The idea of utilizing the prototypes (weights) of a SOM to model an evolving contour has produced a new class of Active Contour Models (ACM s), known as SOM based ACM s. Such models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property, and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey paper, the main principles of SOMs and their application in modelling active contours are first highlighted. Then, we review existing SOM based ACMs with a focus on their advantages and disadvantages in modelling the evolving contour via different kinds of SOMs. Finally, some current research directions are identified.
منابع مشابه
ناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کاملOn the Relationship between Variational Level Set-Based and SOM-Based Active Contours
Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of t...
متن کاملA New Algorithm for Skin Lesion Border Detection in Dermoscopy Images
Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملA Concurrent SOM-Based Chan-Vese Model for Image Segmentation
Concurrent Self Organizing Maps (CSOM s) deal with the pattern classification problem in a parallel processing way, aiming to minimize a suitable objective function. Similarly, Active Contour Models (ACM s) (e.g., the Chan-Vese (CV ) model) deal with the image segmentation problem as an optimization problem by minimizing a suitable energy functional. The effectiveness of ACM s is a real challen...
متن کامل